Journal of Novel Applied Sciences

Available online at www.jnasci.org ©2013 JNAS Journal-2013-2-12/716-718 ISSN 2322-5149 ©2013 JNAS

New bounds of arboricity of graph

B. Nikfarjam^{1*}, M. Yunusi² and M. Yahaghi³

- 1- PHD candidate tajik national university
- 2- Head of math tajik national university
- 3- Islamic Azad university of Ramsar, Iran

Corresponding author: B. Nikfarjam

ABSTRACT: let G be a graph with n vertices and m edge and γ , θ , θ_0 denote, respectively, the arboricity, thickness and outer thickness of G. we establish inequalities; each of which is best possible up to a constant, between pairs of these parameters. In particular, we show.

$$\begin{split} \gamma(G) &\leq 4\theta(G) \\ \gamma(G) &\leq \frac{3}{2} \theta_0(G) \\ \gamma(G) &\leq \sqrt{m} + O(1) \\ \gamma(G) &\leq \frac{1}{2} \sqrt{m} + O(1) \end{split}$$

Keywords: arboricity.

INTRODUCTION

There are several different ways to characterize the embeddability of a graph G. the thickness $\theta(G)$ of a graph is the minimum number of planar sub graph into which the graph can be decomposed. The thickness problem , asking for the thickness of a given graph G, is NP-hard so there is little hope to find a polynomial time algorithm for the thickness problem on general graphs. The thickness problem has application is VLSI design.[G.chartland and et al] the outer thickness $\theta_0(G)$ of a graph G is minimum number of outer planar sub graph into which the graph can be decomposed. The arboricity $\gamma(G)$ of a graph G is the minimum number of forests whose union in G. is the minimum number of forests whose union in G.

Theorectical bounds

In this section we give some bounds for the thickness and outer thickness of a graph.

Theorem (2.1) [F.harary]. Let G'=(V,E') be a maximum planar sub graph of graph G=(V,E). then $|E'| \le 3|V| - 6$. **Theorem (2.2)** [F.harary] let G'=(V,E') be a maximum planar sub graph of a graph G=(V,E) which does not contain any triangle. then $|E'| \le 2|V| - 4$.

Theorem (2.3) [K.S.Kedlaya] let G'=(V,E') be a maximum outer planar sub graph of a graph G = (V,E) then $|E'| \le 2|V| - 3$.

Theorem (2.4) [K.S.Kedlaya] let G'=(V,E') be a maximum outer planer sub graph of a graph G=(V,E) which does not .contain any triangle . then

$$|E'| \le \frac{3|V|}{2} - 2.$$

Def (2.1) the thickness of a graph, denoted by $\theta(G)$, is the minimum of planar sub graph in to which the graph can be decomposed. Evidently, $\theta(G) = 1$ if and only if G is planar.

Theorem (2.1) if G=(V,E) is a graph with (|V| = n > 2) and |E| = m, then :

i)
$$\theta(G) \ge \left|\frac{m}{3n-6}\right|$$

ii) $\theta(G) \ge \left|\frac{m}{2n-4}\right|$, if G has no triangle.

Proof. by theorem (2.1), the denominator is the maximum size of each planar sub graph. The pigenhole principle then yields the inequality.

Theorem (2.2) [C.st.j.Nash-Williams] if G=(V,E) is a graph with (|V| = n > 10) and |E| = m maximal degree d, then

i)
$$\theta(k_n) \le \left\lfloor \frac{m+7}{6} \right\rfloor$$

ii) $\theta(G) \le \left\lfloor \sqrt{\frac{m}{3}} + \frac{7}{6} \right\rfloor$
iii) $\theta(G) \ge \left\lfloor \frac{d}{2} \right\rfloor$

Theorem (2.3) [Beink, L and et al]. The thickness of the complete bipartite graph $k_{m,n}$ is $\theta(k_{m,n}) = \left[\frac{m.n}{2(m+n-2)}\right]$

except if m and n are both odd , $m \le n$ and there is an integer k satisfying $n = \left\lfloor \frac{2k(m-2)}{m-2k} \right\rfloor$

Theorem (2.4) [Beink, L and et al]. the thickness of the complete bipartite graph $k_{n,n}$ is

$$\theta(K_{n,n}) = \left\lfloor \frac{n+5}{4} \right\rfloor.$$

Theorem (2.5) [A.M.dean and et al] let G be a graph with minimum degree δ and maximum degree Δ . then $\left|\frac{\delta+1}{4}\right| \leq \theta(G) \leq \left|\frac{\Delta}{2}\right|$.

Theorem (2.6) [Kleiner and et al] the thickness of the hypercube Q_n is n + 1

 $\theta(Q_n) = \left\lceil \frac{n+1}{4} \right\rceil$

New bounds of arboricity

It is well-known that thickness, outer thickness, arborcity re within a constant factor of each other . in particular conclave recently proved a longstanding conjecture that every planar graph G has outer thickness $\theta(G) \le 2$. Thus $\theta_0(G) \le 2 \theta(G)$.

Also health has shown that a planar graph can be divided into two outer planar graphs. There fore $\theta_0(G) \le 2 \theta(G)$ Nash-Williams gave the exact solution for arboricty.

Theorem (3.1) [C.st.j.Nash-Williams] (Nash-Williams)

Let G be a graph . then $\gamma = max \left[\frac{m_H}{n_{H-1}}\right]$ Where the maximum is taken over all nontrivial subgraph H of G. **Claim(3.1)** if G be a graph then $\gamma(G) \leq 3\theta G$

Proof. according to theorem (2.4) $m \le \frac{3n}{2} - 2$

$$\frac{m \le \frac{3n}{2} - 2}{\xrightarrow{\text{theorem (3.1)}}} \gamma(G) \le \frac{3n - 4}{2} \to m \le \frac{3n - 4}{2} \le \frac{3n - 3}{2} = \frac{3(n - 1)}{2}$$

By the way since $\theta_0(G) \le 2 \theta(G)$ then $\gamma(G) \le \frac{3}{2} \times 2\theta(G) = 3\theta(G)$

Claim (3.2) every planar graph G satisfies $m \le 2(n-1)$.thus $\gamma(G) \le 2\theta_0(G)$ **Proof** . according to theorem (2.3) $m \le 2n-3$

 $m \le 2n-3 \le 2n-2 \rightarrow m \le 2(n-1) \xrightarrow{\text{theorem (3.1)}} \gamma(G) \le 2\theta_0(G)$ relation between thickness and arboricity [B.Nikfarjam and et al] Now we show that new results for arboricity of a graph.

Claim (4.1) . if G be a graph then i. $\gamma(G) \leq 2\theta G$

ii. $\gamma(G) \leq 2\theta G$

Proof. According to theorem (2.2) $m \leq 2n - 4$

 $m \leq 2n-4 \leq 2n-2 = 2(n-1) \rightarrow m \leq 2(n-1) \xrightarrow{\text{theorem (3.1)}} \gamma(G) \leq 2 \theta(G)$ also since $\theta(G) \leq \theta_0(G)$ and by claim (3.2) $\theta_0(G) \leq 2 \theta(G)$ then $\gamma(G) \leq 2 \theta_0(G) \leq 2 \times 2 \theta(G) = 4 \theta(G).$ But by applying Nash-Williams , results , dean at all showed that $\gamma(G) \leq \left[\sqrt{\frac{m}{2}} \right]$.

This gives also a lower bound for outer thickness . the upper bound is of the right order , since the outer thickness of the complete graph with n vertices is o(n). on the other hand, since $\theta_0(k_n)$ is approximately $\sqrt{\frac{m}{8}}$ and $\theta_0(k_{n,n})$ is approximately $\sqrt{\frac{m}{8}}$, it seems that the constant is not the best possible . also conjecture the following upper bound for outer thickness. [T.Poranen]

Conjecture (4.1) $\theta_0(G) \leq \sqrt{\frac{m}{8}} + o(1)$ for an arbitrary graph G with m edges.

Theorem (4.1) [A.M.dean and et al] $\theta(G) \leq \sqrt{\frac{m}{16}} + o(1)$ for an arbitrary graph G with m edges. **Claim (4.2)** $\gamma(G) \leq \sqrt{m} + o(1)$ for an arbitrary graph G with m edges.

Proof. According to theorem (4.1) since $\theta(G) \leq \sqrt{\frac{m}{16}} + o(1)$

 $4 \theta(G) \le 4 \sqrt{\frac{m}{16}} + 4 o(1)$ $4 \theta(G) \leq \sqrt{m} + o(1)$

But by claim (4.1) $\gamma(G) \leq 4 \theta(G)$ then $\gamma(G) \leq \sqrt{m} + o(1)$. **Claim (4.3)** $\gamma(G) \leq \frac{1}{2}\sqrt{m} + o(1)$ for an arbitrary graph G with m edges.

Proof. According to theorem (4.1) since $\theta(G) \leq \sqrt{\frac{m}{16}} + o(1)$

 $2 \theta(G) \le 2 \sqrt{\frac{m}{16}} + 2 o(1) \to 2 \theta(G) \le \frac{1}{2} \sqrt{m} + o(1).$ But by claim (4.1)) $\gamma(G) \leq 2 \theta(G)$ then $\gamma(G) \leq \frac{1}{2} \sqrt{m} + o(1)$.

CONCULSION

In this paper we present some results have concerning the thickness and edge of a graph. In particular, bounds on the arboricity of graph are given. It seems that bounds are not unique.

REFERENCES

Beink LW, Harary F and Moon J. 1964. On the thickness of the complete bipartite graphs, proc, camb, phill. soc.60; 1-5.

Chartland G and Harary F. 1967. Planar permutation graphs. Annals instate henri Poincare. 3: 333–338.

Dean AM, Huntchinson JP and Scheinerman ER. 1991. On the thickness and arborcity of a graph. Journal of combinatorial theory series B, 52 :147-151.

Harary F. 1971. graph theory. Addison-Wesely.

Heath LS. 1991. Edge coloring planar graphs with two outer planar sub graphs.

Kedlaya S. 1996. Outer planar partition of planar graphs, 238-248.

Kleinert MD. 1967. N-dimensionalen wÜrfel graphen j. comb. theo 3 10-15. Nash-Williams STJ. 1984. In proceeding of the 2nd ACM-SIAM symposium on discrete algorithms, pages 195-202 C., Decomposition of finite graphs into forests. Journal of London mathematical society, 39: 12.

Nikfarjam B and Yunusi M. 2011. New Relations between Thickness and Outer Thickness of a Graph and its arboricity, Theoretical Mathematics and Applications, 37-48.

Poranen T. 2004. Approximation algorithms for some topological invariant of graphs.